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Received 10 August 1973 

Abstract. I t  is shown that Baxter’s method when applied to the XXZ hamiltonian gives 
a set of eigenvectors and wavenumbers different from those of the familiar Bethe solution. 
In this limiting case of Baxter’s results for the eight-vertex model we find that one of Baxter’s 
parameters corresponds to the freedom of making arbitrary rotations about the z axis. 
It is suggested that for the general XYZ hamiltonian there may be a generalization of the 
ordin,ary z component of spin which would be conserved in addition to Baxter’s quantum 
number. 

1. Introduction 

Recently Baxter has obtained the eigenvectors and eigenvalues both of the transfer 
matrix for the eight-vertex model (Baxter 1973a, b, c) and of the X Y Z  hamiltonian for a 
one-dimensional anisotropic Heisenberg chain of spins 5 (Baxter 1972). The X Y Z  
hamiltonian may be written 

N 

xxyz = -; [ ~ i + r ) a ; ~ ; + , + ~ i - r ) a ~ o , ~ , , + f ~ a ~ a ~ + ~ 1 ,  (1.1) 
j =  1 

where the aj  are Pauli matrices with periodic boundary conditions, aj+N = aj, and 
the number N of sites in the chain is assumed to be even. The method of diagonaliza- 
tion consisted of finding invariant subspaces of ZxYz labelled by an integer valued 
quantum number n and then constructing eigenvectors in each subspace. This procedure 
is precisely analogous to  Bethe’s method (Bethe 1931, Yang and Yang 1966) for the 
X X Z  hamiltonian, 

where the total z component of spin 
N 

SL = 3 a; 
j =  1 

(1.2a) 

(1.2b) 

(1.3) 

is conserved and hence is used to label invariant subspaces in which the diagonalization 
may be performed. Baxter has remarked however (Baxter 1973a) that in the r + 0 
limit of his solution one does not directly obtain the familiar Bethe solution for HxXz. 
Our aim here is to study this limiting case in more detail. We have already examined 
Baxter’s solution in the case A = 0 (Jones 1973) and shown that it is not identical with 
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the usual solution for the X Y  model. We will show here that similarly in the X X Z  
model Baxter’s method may be applied to  give a diagonalization of Hxxz different 
from the ordinary Bethe solution. A study of this limiting case throws some light on the 
significance of the free parameters that occur in Baxter’s general eigenstates. Also we 
find that the wavenumbers associated with Baxter’s ‘spin’ waves are not the usual wave- 
numbers characteristic of a simple system of N spins. 

Thus in 0 2 we construct families of vectors which form invariant subspaces with 
respect to .yPxxz. In 9 3 we use a Bethe-type ansarz to construct eigenstates of Ye,,, 
within each allowed subspace. Finally we discuss the role of the free parameter that 
occurs in these new eigenstates. 

2. Baxter families for HxXz 

We wish now to show briefly how to construct special families of vectors, invariant 
under the action of HxXz, which are the r + 0 limiting cases of Baxter’s families (Baxter 
1973b) for the eight-vertex model transfer matrix. Rather than directly take the limit of 
Baxter’s results as stated for the transfer matrix, we will indicate how to derive the 
vectors using an argument directly fitted to the X X Z  hamiltonian. This argument 
closely parallels that given for the X Y model (Jones 1973). 

Thus on each spin site j we define orthonormal pairs of spinors labelled by an integer 
I j .  We write the ‘up’ spinor as 

(2.la) 

and the ’down’ spinor as 

(2.1 b) 

where p( l , )  is to  be determined. Consider two adjacent spin sites j , j +  1 with ‘up’ spinors 
on each site and the integers related by I,+ = 1, + 1. Since the spin space for the two 
sites is four dimensional we may write 

~ , , + 1 4 f J J , + l  0 41,+1.1,+2 

= D l 4 l , , f , + l  0 4 f J + l , f , + z + ~ 2 + f J , f J - l  0 +1,+1,1,+2 

f D 3 4 1 , , 1 , + 1  @ ~ f , + l , f J + D 4 ~ f J , f , - l  @ 4 l J + l , I , ?  (2.2) 

where 

D, = [(I +Ip(lj)12)(1+Ip(lj+ 1 ) 1 2 ) ] - ” 2 [ - p 2 ( I j ) - p 2 ( I j +  1)+2Ap(Ij)p(Ij+ l)]. (2.3) 

When working with the hamiltonian rather than with the transfer matrix, the quantities 
p ( l j )  are determined by the requirement that D, should vanish. The vanishing of D4 has 
the consequence that the pair hamiltonian Hj,j+ does not simultaneously turn ‘down’ 
(‘up’) two adjacent ‘up’ (‘down’) spinors. Such a condition is essential in order that the 
direct product states which we define below (2 .  loa) form families which are closed 
under the action of the total hamiltonian X It does not seem possible to achieve this 



Baxter's method for  the X X Z  model 497 

closure property by any other choice for D,. Requiring that 0, should vanish gives then 
the condition 

(2.4) 

This equation enables us to find p ( l +  1) once p ( l )  is given. Henceforth let us work in the 
regime 

-1 < A  ,< +1, (2 .5~)  

p 2 ( l j ) + p 2 ( l j +  1) = 2Ap(lj)p(lj+ 1). 

which means we may parametrize A by 

A = COS 21, 

with real 1. We may now solve (2.4) to get 

p ( I j +  1) = e f i 2 " p ( I j ) .  

(2.5b) 

This result suggests that a convenient choice for p ( l )  is 
p ( ~ )  = p ( l ,  s) = ei('+ 2 f q ) ,  (2.7) 

where s is assumed to be real and represents a freedom of phase in fixing p ( l ) .  This s is 
the same as Baxter's parameter s in the eight-vertex model solution (Baxter 1973a, b, c). 
With this choice for p( l ,  s) and defining 

B(1, s) = $i sin 2t7 (2.8) 

one may show that (2.2) becomes 

xj,j+ 1 4 I j , f j +  1 @ 4fj+ 1 , 1 j + 2  

= b#)fj,fj+ 1 0 4 f j + l , f , + 2 + B ( ~ j , ~ ) ~ f j , f j - l  0 4 1 j + 1 , 1 j + 2  

-B(lj+ 1, ~)4fj,fj+ 1 0 41j+ 1 , 1 j *  
(2 .9~)  

Similarly (Jones 1973) one may show that 

* j , j +  14fj,lj+ 1 @ 4 1 j +  1 . 1 ,  

= - T A $ J , ~ , I ~ +  1 1 0 $Ij+ l , f j +  B(lj9 S ) $ f j , f j -  1 @ 41j+ 1 , i j  

-B*(l j+ l,s)#ij,ij+i 0 4 1 ~ + 1 , / ~ + 2 + 4 1 ~ , 1 , - 1  @ 41j-l~jj (2.9b) 

q ' . j +  1 4 , j , l j -  1 0 41j- 1 . 1 j  

= -iA41j,Ij- 1 0 4fj-1,fj+B*(lj ,  S)$lj.fj+ I 0 41j-1.1j 
1, s)4fj,fj- 10 4fj- 1 , f j - 2  +41j,fj+ 1 0 $ I j +  1 , l j '  

(2 .9~)  

xj,j+ 1 4 f j , f , -  1 0 41j- 1 , l j - 2  

= i A 4 1 j , f j - 1  0 4f,-l,Ij-2+B*(Ij,s)4fj,~j+l 0 4 f j - 1 , 1 ~ - 2  

-B*(l j -  1, s ) 4 l j , t j -  1 0 4 1 ~ -  I , I , .  
(2.9d) 

We may now define product states in the 2N dimensional space W on which XxXz 

(2.104 
acts by (Baxter 1973a, b, c) 

$ ( l 1 ? ~ 2 9 " ' 7 ' N ? ' ? $ + l )  = 4 f 1 , f z  @ ( P f a , f ,  @ " ' @  4 1 N - 1 , f N  @ 4 I N q f N c l  

where the sequence of integers I , ,  . . . , I,+ must obey certain constraints in order that 
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families of such vectors should be closed under the action of Sxxz. The first constraint 
is 

(2. lob) 

The second constraint links together I ,  and I N +  , and is a kind of cyclic boundary con- 
dition. However, in order to impose this second constraint, it is necessary to restrict the 
values of tj which occur in (2.5b) to be rational multiples of 71. Precisely, we assume that 
there is an even integer L and an integer m 1  such that (Baxter 1973a) 

I j + ,  = I j  f 1. 

Ltj = m,n. (2.104 

With this definition of L we may write the second constraint as 

IN+, E I,(mod L). (2.10d) 

It is often convenient (Baxter 1973c) to denote $(I1,. . . , I N +  ,) by giving the value of I ,  
together with the sites x 1  < x 2  < . . . e x ,  along the chain at which ‘down’ spinors 
occur in the product (2.104 Writing I ,  = I ,  

$(I1 I2 9 . . . 3 IN+ 1) = $ ( I  ; x i ,  x2 * . . , X , ) ,  

n = iN(modiL). (2.1 

(2.1 

where in order to satisfy (2.10b, d )  the number of ‘down’ spins n must satisfy 

Because of (2.10~) we have that 

$(I+L; X I , .  . . , xn)  = $(1; X I , .  . . , x,). (2.1 IC) 

If one now combines together (1.24 b) and (2.9a, .b, c, d),  one sees that the effect of 
Sxxz on such a vector is to preserve the number n of ‘down’ spinors. However, the 
integer I may be unchanged or else shifted by f 2 and an individual x i  may be unchanged 
or else shifted by f 1. The set of vectors $( l ;  x , ,  . . . , x,) for n fixed but with the various 
choices of x , ,  . . . , x ,  and with 1 ranging from 0 or 1 in steps of two up to L - 1 or L 
contains aL(t) vectors. This set of vectors forms a family which is closed under the 
action of Sxxz. Such a family spans an invariant subspace labelled by the number n. 
Because 1 jumps in steps of 2, it is convenient to introduce an integer lo which may be 
either 0 or 1 and to write 

$ j ( X , , . . .  $(&+2j-2 ;x , , . . . ,  X n ) ,  (2.124 

with (2.1 IC) becoming 

+j+*L(x,, ~ 1 , .  . ., xn) = + j < x , , . .  ., Xn), (2.12b) 

When working out the action of Zxxz on such states the coefficients in (2.9a, b, c, d )  
involving E({,  s) all cancel out to give quite simple results. Thus if N E qmod L) there 
is a family of n = 0 states. For these we have 

&‘xxz+j = - i N A $ j ,  (2.13) 

If N = 2(mod L) there is an n = 1 family. For these one finds 

x x x z +  j ( x )  = - +NA+j<x) + A$ j (x)  - ++j(x - 1 ) - )+j(x + 1 ), (2.14a) 
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where we again make the supplementary definitions 

3. Some eigenvectors of .Hxxz 

If we fix N and L, we may then expect to construct, for each value n allowed by (2.11b), 
eigenvectors of ZxXz by taking a linear combination of the vectors in the family labelled 
by n. The working involved is quite like that for the ordinary Bethe solution (Bethe 1931) 
so we shall merely sketch the construction for the case n = 2 and then state the general 
result for other values of n. 

Thus we look for a state 
L / 2  

W, S) = exp[-iW-4)1 C 1 f(j; x l ,  xz)$j(xl, x2) (3.1) 
j = 1  X I < X Z  

satisfying 

J?xxzY(2, S) = (€2 -$NA)Y(2, s). 

The phase factor exp[ - ifs(N - 4)] is chosen for later convenience in discussing the role 
of the parameter s and plays no part in the present calculation. We put the expres- 
sion (3.1) into (3.2) and try to determine f( j ;  x l ,  x2) and c 2  by equating coefficients of 
$Axl, x2) on each side of the resulting equation. 

First look at terms $Axl, x2) in which x1 # 1, x2 # N ,  and x2 # x1 + 1. By equating 
coefficients we obtain 

cS( j ;x l , x2 )  = 2Af(j;x,,xz)-ff(j; x l +  1,xZ)-ff(j;x1-1,x2) 

- t f ( i ;  x l , x 2 +  l)-+f(j; x l r x 2 -  1). 
The form of this equation together with the general form of Baxter's results for the eight- 
vertex transfer matrix (Baxter 1973c) suggests trying a solution to this equation of the 
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f ( j ;  x l ,  x2) = C12hl(j)h2(j- 1) eiqlxleiq2xz- C21h2(j)hl(j- 1)eiqzxl eiqlX2. 

The value of c2  is then 

(3.3a) 

€2  = (A - COS ql) + (A - COS q 2 ) .  (3.3b) 
Next equate coefficients of t+bj(l,x2) when 2 < j < i L ,  x2 # x l + l ,  x2  # N to 

obtain 
c2f( j ;  Lx2)  = 2 A f ( j ;  1,x2)-if(j;2,x2)-3f(j-1;x2,N) 

-if( j ;  1, x2 + 1) -if( j ;  1, x2 - 1). 

This equation is satisfied only if 

f(j- 1 ; x2, N )  = f ( j ;  0, x2), 

which is equivalent to 

C12hl( j) = - C ,  l h l (  j - 2) eiqIN (3.4) 
together with the corresponding equation when q1 and q2 are interchanged. 

If we look at coefficients of $,{xl, x1 + 1) for x1 # 1, N -  1, we find 

x l ,  x l +  1) = Af(j; x l ,  x1 + l)-+f(j; x l ,  x1 +2)  - +f(j; x1 - 1, x1 + l), 

which is true only if 

Substitution of the form (3.3a) leads to 
f ( j ; x l , x l ) + f ( j ; x l + l , x l + l )  = 2Af( j ;x l ,x l+1) .  

-- C12 W- 1) h2(j) , - ie(q1,q2) ,  

C2, hl( j )  h2(j-1) 
- 

where O(ql, q2)  is the well known phase (Yang and Yang 1966) defined by 

Finally from the terms $1(1, x2) for x2 # x1 + 1, N we have 

czf(1; 1, ~ 2 )  = 2Af(l; 1, ~ 2 ) - ) f ( l ;  2, ~2 ) - i f (3L ;  ~ 2 ,  N )  

- i f ( l ;  1, x2+ l ) - i f ( l ;  1, x2 - 1) 

f(3L; x2 9 N )  = f (1;  0, x2). 

C12h1(l)h2(0) = -C21h2()L)h1($!,- 1) eiqlN, 

which is possible only if 

This condition leads to 

and a similar equation with q l ,  q2 interchanged. 

(3.5a) 

(3.5b) 

(3.6) 
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The aim next is to use equations (3.4), (3.5) and (3.6) to try to determine C,,, h , ,  h,, 
q l ,  9,. To do  this let us make the reasonable hypothesis (Baxter 1973c) that the functions 
h( j )  have the same periodicity as $Axl, a . , xn),  namely we assume 

h(j++L) = h(j) .  

Now rewrite ( 3 . 5 ~ )  as 

If we iterate this equation L/2 times and use the assumed periodicity we see that 

We may satisfy this condition in the simplest way by choosing 

(3.7) 

( 3 . 8 ~ )  

(3.8b) 

Having fixed C,,/C,, we now learn from (3.52) that 

where w must be independent of either q1 or q,. It then follows that we may assume 
h(q, j )  to be independent of q and dependent only on j .  If we look at  (3.4) in the case that 
L/2 is an odd integer and use the periodicity of h ( j )  we see that w must also be indepen- 
dent of j .  Thus a solution for h( j )  is 

h( j )  = 0 9 - 1 ,  ( 3 . 9 ~ )  

where to satisfy the periodicity requirement (3.7) w must be one of the L/2th roots of 
unity, 

gLI2  = 1 .  (3.9b) 

The function f ( j ;  x1 , x,) now may be written 

f(j; xl, x2) = c p  exp{ -3i@(qpl, qp2) )gp l ( j ,  x l k p 2 ( j -  1, x2), (3.104 
P with 

g , ( j ,  X )  = w j -  1 +*, (3.10b) 

where the sum is over permutations P1, P 2  of the integers 1,2 and c p  is the parity of the 
permutation. Finally we see that (3.6) requires q, ,  4,  to satisfy the equations 

(3.1 Oc) 

One may now verify that all remaining conditions arising from coefficients of states 
t,bj(xl, x , )  not yet examined are satisfied by the solution (3.10a, b) with wavenumbers 
(3.10c). 



502 R B Jones 

It is now straightforward to verify that from vectors t,bj(xl, x 2 , .  . . , x,) in the family 
with n ‘down’ spins we can construct eigenvectors 

w; s) = w?l , 4 2 , .  . ’ 9 4 , ;  s) 
Liz  

j = 1  X I < X ~ <  ... < x ,  
= exp[- iW-2n)]  1 f ( j ; x l , X Z , .  . . ,x,)t,bj(xl,. . . ,x , ) ,  

(3.11a) 
where 

f ( j , X 1 , . . . , x n )  

(3.1 1 b) 

and the summation is over permutations P1, P2,. . . , Pn of the integers 1 , .  . . , n with 
parity c p .  The functions gr( j, x) are as in (3. lob) and the wavenumbers are determined by 
solving the equations 

(3.1 IC) 
I =  1 I 

for r = I , .  . . , n. For this state we have 

X x x z Y ( n  ; S) = (c, - iNA)Y(n ; s),  (3.11d) 

where 
f l  

C, = 1 (A-COS qr). 
r =  1 

(3.11e) 

4. Discussion 

Many formal aspects of the eigensolution sketched above are similar to the ordinary 
Bethe solution but in spite of superficial resemblances the two solutions are rather 
different. This is basically because the states t,bj(xl,. . . , x,) are not eigenstates of S,  and 
the quantum number n is unrelated to S , .  Although the equations ( 3 . 1 1 ~ )  for the wave- 
numbers are very similar in form to those discussed by Yang and Yang (1966), the presence 
of the L/2th root of unity o modifies the solutions in an interesting way. As an example, 
suppose the chain is of length N satisfying N = 2(mod L) .  Then we have n = 1 families 
and the corresponding eigenvectors are simple ‘spin’ waves in terms of the ‘up’ or ‘down’ 
spins of 9 2. 

In this case the wavenumbers q are determined by 

&qN = W 

or 
e W L / Z  = 1. 

Thus these ‘spin’ waves have wavenumbers which one would not ordinarily associate 
with a simple spin chain of length N .  The question of how to transform the solution 
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sketched here into the familiar Bethe solution (and vice versa) is not one which can be 
easily answered. The wavefunctions in the two solutions are quite different. Thus a 
Baxter eigenvector such as (3.1 la) with a fixed value of n is some superposition of Bethe 
eigenstates with all possible eigenvalues of S, represented in the superposition. Since 
the spectrum of energies must be the same in both solutions it may be easier to look 
first for a simple relation between the wavenumbers of the Baxter solution as given by 
(3.1 IC) and those of the Bethe solution which are given formally by solving ( 3 . 1 1 ~ )  with 
w = 1 and the restriction (2.11b) on n removed. Any answer to this question must 
await further investigation. 

A further interesting point is the occurrence of the parameter‘s in the eigenstates 
Y(n; s) above. In Baxter’s general eigenvectors for the eight-vertex model transfer 
matrix there are two parameters s and t. Our requirement of$2 that the ‘up’ and ‘down’ 
spinors 4f,f+ 1, c # ~ ~ , ~ -  should be orthogonal has fixed t relative to s but otherwise our s 
is identical with Baxter’s s. In (3.1 l a )  we have included an explicit phase 

exp[ - i&(N - 2n)] 

in front of the summation over $,{xl, . . . , x,). If we look at 

exp[-i&(N-2n)]$j(x1,. . . , x,) 

in detail then at site j we get a factor 
spin, 

for an ‘up’ spin and a factor eis/2 for a ‘down’ 

We observe then that 

Y(n; s) = exp(isS,)Y(n; 0). (4.1) 
Thus the occurrence of this free parameter in the XXZ case is associated with the fact 
that both S, and n are conserved quantities. In the ordinary Bethe solution S, is diagonal 
while in the Baxter solution sketched above the operator corresponding to n is diagonal. 
The operator whose eigenvalue is n will be itself dependent upon the parameter s so 
that despite the appearance of equation (4.1) this operator will not commute with S,. 
It is interesting to speculate that in the general XYZ case and in the eight-vertex model 
there may again be two conserved but non-commuting quantities, one of them being 
Baxter’s n, the other being some generalization of S,. For the special case of the asym- 
metric XY model one can obtain the operator corresponding to Baxter’s n explicitly 
(Jones 1974). Hence this speculation may be pursued further most easily in the XY 
model. 
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